If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-6v-39=0
a = 1; b = -6; c = -39;
Δ = b2-4ac
Δ = -62-4·1·(-39)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-8\sqrt{3}}{2*1}=\frac{6-8\sqrt{3}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+8\sqrt{3}}{2*1}=\frac{6+8\sqrt{3}}{2} $
| -21n-18=34-8n | | 4r=14-r-6 | | 3(x-1)+8=6x+7-5x | | 6r-8=26 | | x-14.55=14.56 | | 0k−5k−3k+3k−4k=5 | | 1/6n=12 | | 6x+22+2x+4=90 | | 2^1-p=8 | | 6x+22+2x+4=9£ | | 60=1/2*4*h | | 3x+2-2-x=11x+9 | | 7d-13=3d-7 | | 4r=128 | | 3y/4=5/6 | | -9(1x-8)-5=6(x-12)+304 | | 20=-5+5x-10x | | 2x-8+-8x=-2 | | -67=4n+3(1+6) | | 16.50+289=18.75x+274.60 | | 2x-8+7x=4+7x+12 | | 2x-9+-8x=-2 | | 0=(3x+6)(2x-10) | | 15-7(2x=1)=-6x | | 15m+8=10 | | -8*4y*2=6+5y-420 | | -113m+7=34 | | (2/3)(9b-27)=3b | | 11x-2x+56=11x+40 | | -17x+13^x=0 | | 3(1-2x=3-6x | | -17+13^x=0 |